Найти производную функции первого порядка

Данный онлайн калькулятор предназначен для решения производных функций первого порядка.
Производная служит обобщенным понятием скорости изменения функции. Производная f’(x) функции f(x) в точке x – это предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю. Нахождение производной функции называется дифференцированием функции.

Вам нет необходимости знать различные таблицы и формулы производных, так как для нахождения производной онлайн нужно ввести только исходную функцию, которую следует дифференцировать. В ответе выводится как найденная производная функция, так и график этой функции.
Калькулятор поможет найти производную функции первого порядка онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.



Основные функции

\left(a=\operatorname{const} \right)

  • x^{a}: x^a

модуль x: abs(x)

  • \sqrt{x}: Sqrt[x]
  • \sqrt[n]{x}: x^(1/n)
  • a^{x}: a^x
  • \log_{a}x: Log[a, x]
  • \ln x: Log[x]
  • \cos x: cos[x] или Cos[x]
  • \sin x: sin[x] или Sin[x]
  • \operatorname{tg}x: tan[x] или Tan[x]
  • \operatorname{ctg}x: cot[x] или Cot[x]
  • \sec x: sec[x] или Sec[x]
  • \operatorname{cosec} x: csc[x] или Csc[x]
  • \arccos x: ArcCos[x]
  • \arcsin x: ArcSin[x]
  • \operatorname{arctg} x: ArcTan[x]
  • \operatorname{arcctg} x: ArcCot[x]
  • \operatorname{arcsec} x: ArcSec[x]
  • \operatorname{arccosec} x: ArcCsc[x]
  • \operatorname{ch} x: cosh[x] или Cosh[x]
  • \operatorname{sh} x: sinh[x] или Sinh[x]
  • \operatorname{th} x: tanh[x] или Tanh[x]
  • \operatorname{cth} x: coth[x] или Coth[x]
  • \operatorname{sech} x: sech[x] или Sech[x]
  • \operatorname{cosech} x: csch[x] или Csch[е]
  • \operatorname{areach} x: ArcCosh[x]
  • \operatorname{areash} x: ArcSinh[x]
  • \operatorname{areath} x: ArcTanh[x]
  • \operatorname{areacth} x: ArcCoth[x]
  • \operatorname{areasech} x: ArcSech[x]
  • \operatorname{areacosech} x: ArcCsch[x]
  • [19.67] =19: integral part of (19.67) - выделяет целую часть числа (integerPart)
Производные

Для того, чтобы найти производную функции f(x) нужно написать в строке: f[x], x. Если Вам требуется найти производную n-го порядка, то следует написать: f[x], {x, n}. В том случае, если Вам требуется найти частную производную функции f(x,y,z,...,t) напишите в окне гаджета: f[x, y, z,…,t], j, где j — интересующая Вас переменная. Если нужно найти частную производную по некоторой переменной порядка n, то следует ввести: f[x, y, z,…,t], {j, n}, где j означает тоже, что и Выше.

Важно подчеркнуть, что калькулятор выдает пошаговое нахождение производной при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Примеры
  • x*E^x, x;
  • x^3*E^x, {x,17};
  • x^3*y^2*Sin[x+y], x;
  • x^3*y^2*Sin[x+y], y,
  • x/(x+y^4), {x,6}.
Рейтинг: 5 (Голос 1)
Вам помог этот калькулятор?

Предложения и пожелания пишите на [email protected]

Поделитесь этим калькулятором на форуме или в сети!

Это помогает делать новые калькуляторы.





НЕТ